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COLD TESTS OF QUASI-OPTICAL
GYROTRON RESONATORS

I. Introduction

Gyrotrons are currently under development as efficient, high-power sources of millimeter
waves. The trend is toward higher power (> 1 MW average) and higher frequency (submil-
limeter wavelengths). Waveguide cavity gyrotrons are presently the leading candidate for
electron cyclotron heating of fusion plasmas.! However, these conventional cavity gyrotrons
suffer from large ohmic heating, transverse mode competition, and electron beam collection
problems as power and frequency are increased. The quasi-optical gyrotron (QOG) was
proposed by Sprangle, Vomvoridis, and Manheimer in 1980%24° and has the potential to
overcome each of these difficuiiles.

The quasi-optical resonator is comprised of a pair of spherical mirrors separated by
many wavelengths. The QOG operates in a series of TEMgy modes, where [ > 100 for cw
relevent configurations. Higher order transverse modes can be made to suffer from large
diffraction losses due to the finite size of the mirrors. The diffraction of the TEMgy modes
around one or both of the mirrors is collected as output.

Typical round-trip diffraction losses are several percent. This output coupling sen-
sitively depends upon the mirror size, radius of curvature, and separation. For a given
pair of mirrors, output coupling is increased by increasing the separation between the mir-
rors. However, the radiation waist near the center of the cavity is relatively insensitive to
changes in separation. Thus, the output coupling can be varied independently with respect
to the interaction length. This i- 4 v1ique feature of the QOG, and is quite advantageous
experimentally.

The electron beam direction is perpendicular to the axis of the resonator, which allows
the beam to be collected separately from the radiation. This is an important feature for
high-power devices and eases restrictions on the collector. It also facilitates the use of
depressed collector technology. The cavity mirrors are well removed (> 10 cm) from the
wave/beam interaction region, which reduces the ohmic heating density at the mirrors.

The quality factor (@) of a resonator is an important parameter which describes how

well the cavity stores energy and is closely related to the output coupling. The @ for a
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Fabry-Perot-type resonator can be very large. Quality factors on the order of 100,000 are
typical for resonators used in recent experiments at the Naval Research Laboratory. Since
the balance between ohmic effects and diffraction is very important in the QOG, a detailed
experimental study is called for.

Fabry-Perot resonators have been used for years to measure the microwave properties of
solids, liquids, and gases.® These cavitites have proven to be quite useful. For permittivity
and loss measurements, the design goal is to make the @ as large as possible. This is
accomplished by making the mirrors large so that diffraction losses are negligible. Energy
is typically coupled into the cavity through coupling holes or a dielectric beam splitter.

Cold tests of gyrotron cavities are difficult to perform in practice. Most cold-test
schemes involve drilling coupling holes into the cavity walls,” which can perturb the cavity
mode severely. It is also difficult to couple efficiently to the mode of interest, which is
frequently a high-order mode. Woskoboinikow et al.® radiated their conventional gyrotron
cavities in the far field and analyzed the reflected signal. This technique has the advantage
of being nondestructive, so that the hot test cavity may be used for the cold test. It is
difficult to test a QO cavity this way because little energy is coupled into the resonator
mode.

Although the QOG is an advanced concept, it operates in the fundamental Gaussian
mode. This makes coupling to the correct mode very easy. This study uses the method
of Perrenoud et al.® where a small hole is used to couple energy into the resonator and
diffracted power is collected with a standard gain horn as output. This technique has a
distinct advantage in that there is no background radiation pattern on the oscilloscope trace,
which increases the accuracy of the measurment. The majority of the measurements in this
article concern the variation of ) with separation for various cavities. Good agreement is
obtained between measured values and calculations based on scalar diffraction theory. The

effect of misaligning the mirrors is also examined experimentally.




II. Quasi-Optical Resonators

The @ of a Fabry-Perot-type resonator can be written

-5 1)
where L is the separation between mirrors, A is the free-space wavelength, and fi is the
fractional round-trip loss. In practice, this loss factor includes ohmic losses, diffraction
losses, and losses due to coupling holes. These are the three loss mechanisms which are

important in this study. The total § of the resonator can be expressed as

1 1 1

= —_— 2
Q™ "0 @
where Qg is the ohmic @, and Q. is the @ due to diffraction and coupling losses. The

ohmic @ is calculated using the formula

@n = Z(fruso)}. ®

In this expression, p¢ is the permeability of free space and o is the conductivity of the
mirrors. Silver- and gold-plated mirrors are used in the cold tests, with conductivities
6.15 x 107 and 4.5 x 107 Siemens/m, respectively. The ohmic @ increases linearly with
separation and is unimportant for large output coupling.

The diffraction/coupling @Q is calculated separately from the ohmic Q. This is accom-
plished by a computer code which is based on a scalar Huygen’s formulation.'® Inputs to
the code include the wavelength of the radiation, the mirror radius, the radius of curvature
of the mirrors, the separation between the mirrors, and the dimensions of a coupling hole.
Some of these parameters are illustrated in Figure 1. The program also models cavities
where the mirrors are not identical. Outputs from the code include @, the balance be-
tween Qg and Q. , and the electric field distribution along the surface of each mirror for
the TEMgy and TEMy;, modes. Other modes may also be analyzed.

A chief obstacle to performing cold tests of millimeter-wave resonators is coupling power

into the cavity without perturbing the Q too seriously. In this study, a small coupling hole
3




is drilled through the center of one mirror. The size of the hole is chosen to minimize
degradation of @ while coupling a meaningful amount of power into the cavity. The radius
of the coupling hole is 0.38 mm. The calculated effect of the coupling hole can be seen in
Figure 2. For separations greater than 20 cm, there is practically no difference between the
two resopators. In the present Navai Research Laboratory QOG experiment, the separation
can be varied between 20 and 28 cm. This resonator lies well within the confocal instability
point at 38.7 cm separation and the concentric stability limit at 77.4 cm separation. Thus,
this cold test cavity should be a good model for the experiment. Below 20 cm, any change
in the round-trip losses results in a large change in the total @, due to the small output
coupling. Figure 3 shows the round-trip transmission loss due to diffraction as a function
of separation for iie cavity analyzed in Figure 2. The transmission varies between 2.5% to

6% in the range of interest.

I1I. Cold Test Apparatus

The experimental set-up is similar to that adopted by Perenoud et al® A schematic
diagram is shown in Figure 4. The entire arrangement is located on an optical table,
with the quasi-optical mirrors mounted on six-inch diameter optical mounts which can be
translated by hand on a rail.

A 0.76-mm diameter coupling hole pierces the left mirror. It is counterbored from
behind, leaving a .005- to .010-inch wall. A WR-8 waveguide is inserted from the back of
the coupling mirror for input, while a standard gain horn intercepts a small amount of the
diffracted signal as output. In practice, the pick-up horn is placed next to the coupling
mirror so that it may remain stationary while the far mirror is translated.

Two millimeter-wave sources are used for the measurements. The first is a 94 GHz
IMPATT which produces 20 mW of power. Its frequency is swept by applying a 1-volt
ramp to the FM port. The second source is a 120 GHz reflex klystron with a power output
of several milliwatts. It is also swept with a low-voltage ramp, which is amplified in the

klystron power supply/modulator and applied to the reflector. It is desirable to have a
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linear frequency sweep versus time for the millimeter-wave source. This allows for direct
measurement of the full width at half maximum ( FWHM) from the oscillocope with no
corrections. Typical sweeps are 20 MHz for this work and are linear over the range of
interest for most resonators.

A detector/amplifier manufactured by Millitech Corp., which has a sensitivity of 50
V/mW, is used to observe the small signals collected by the radiation pick-up. The detector
and its power supply are shielded, which reduces the noise on the oscilloscope to 0.1 mV.
Typical resonances observed on the oscilloscpe are 1-2 mV. The horizontal trace is calibrated
using the interferometer in Figure 4. The interferometer is comprised of two six-inch
diameter mirrors and has a @) of approximately 70,000. The separation can be varied
between 32 and 43 cm, with fine adjustments facilitated by a micrometer graduated to
0.0001 inches. The interferometer would not be required if the quasi-optical cavity was
mounted with a precision micrometer.

The resonator mirrors are made of oxygen-free, high-conductivity (OFHC) copper. They
are machined, polished, and then plated with either silver or gold. The surface finish is
A/20 for A = 10pgm. Thus, surface scattering of millimeter waves should be negligible. The
mirrors have a 0.5-mm bevel at the mirror’s edge, which decreases the effective diameter
by 1.0 mm.

A unique feature of the cold test arrangement is that the resonator mirrors are aligned
with an HeNe laser. The incident beam defines the axis of the resonator, so that the mirror
angle can be optimized by aligning the reflected and incident beams. The coupling hole is
used to full advantage by passing the beam through the hole for centering and alignment.

10

The resonator mirrors can be quickly aligned to better than ;.

IV. Results

Figure 5 shows measured and calculated values of Q@ versus separation for a resonator
with 4.6-cm diameter mirrors. The coupling hole is 0.76 mm in diameter and the frequency

is 120 GHz. The radius of curvature is 38.7 cm for each of the mirrors used in this work.
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The agreement between data and theory is quite good for separations greater than 20 cm,
which is the region of operation the QOG. Measured values are somewhat higher than
predicted at closer separations. This discrepancy may be due to the coupling hole.

A second set of measurements is shown in Figure 6. The frequency is 94 GHz, the
resonator mirrors are 5.6 cm in diameter, and the coupling hole is 0.76 mm in diameter.
The agreement between measured and calculated values is quite good. This resonator is
similar to the resonator in Figure 5 in terms of Q).

Figure 7 shows data obtained with the 4.6-cm mirrors measured at 94 GHz. The values
for Q are much lower due to increased diffraction losses at the longer wavelength. A Q of
7,000 corresponds to a round-trip transmission coefficient of 18% for a separation of 26 cm.

The present QOG utilizes a symmetric cavity; the mirrors are identical. Future configu-
rations may include asymmetric resonators which couple power from one side only. Figures
8 and 9 show measured and calculated @’s for slightly asymmetric cavitites. There is diffrac-
tion around both mirrors, with more loss from the smaller mirror. The code accurately
predicts the properties of these asymmetric cavities.

Another valuable measurement is the effect of misaligned mirrors on the Q. Perrenoud
et al.® found that 0.5° tilt resulted in a 50% degradation of Q for their configuration. This
information is important because the mirrors must be attached to the magnet dewar, and
it is difficult to estimate how well the dewar flanges are aligned. Figure 10 shows the effect
of murror musaiigninent on @ for one of the asymrmetric cavities. The mirror separation is
15.8 cm and the frequency is 94 GHz. The Q begins degrading after 1° of misalignment. By
2°, the Q is reduced by 20%. The small scatter of the data for tilts less than 1° is indicative
of the reproducibility of the measurement. In general, the sensitivity of the resonator to
misalignment depends upon mirror size and separation. Increasing the separation to 25 cm
has little effect on sensitivity to alignment for this cavity.

There are several sources of error in these measurements of @ versus separation. If the
frequency sweep is not perfectly linear in time, a systematic error will be present. Secondly,

there is a random error in reading the FWHM from the oscilloscope. A third source of error




is due to the slightly asymmetric shape of the resonance on the oscilloscope. Adjusting the

pick-up horr usually corrects this problem. Hence, the measured values should be accurate

to better than +10%. This error can be lowered to below +5% with calibration and careful

technique.
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